

Playing with the AnIMLs: Demonstrations of AnIML Generic Viewers

Gary W. Kramer

Biochemical Science Division National Institute of Standards and Technology

AnIML

- AnIML Provides Structures to Organize Result Data and Metadata from Simple to Complex Analytical Chemistry Experiments
- AnIML is the Only Analytical Data Structure to Support Fully Multidetector, Multi-dimensional, Multi-sample, Multi-step, Multisequence Analytical Procedures in a Single File Format
- AnIML 1.0 Supports Sample Data, Raw Analytical Data, Data-Acquisition Parameters, Processed Analytical Data, Data-Processing Parameters, Trace Forming, and Peak Tables

What Does AnIML Provide?

- AnIML Provides Data Structures to Organize the Data from any Analytical Experiment
- AnIML Provides Markup (or Tags) to Identify the Content of any Analytical Data

Some AnIML Files are Simple

Some AnIML Files are Complex

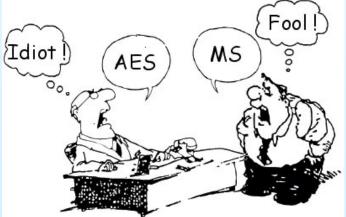
General AnIML File Organization

AnIML File Header

Samples

• Sample ID, Container, Location, & Properties

- Experiment Steps
 - Technique Used
 - Infrastructure
 - Method
 - Author
 - Instrument Properties
 - "Antecedent" Instrument Parameters
 - Result
 - Independent
 - Dependent
 - "Measured" Instrument Parameters


Audit Trail

• Log Entry

Signatures

How is an AnIML File Organized?

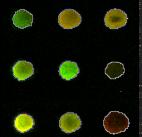
- The Answer is that it Depends to Some Extent on how the Writer of the AnIML File Thinks about the Experiment and the Data
- There are Wrong Ways, and Validator Programs should Find the Errors
- But, there is No Single "Right" Way
- Consider how Two Spectroscopists "See" an ICP-MS Instrument:
 - The Atomic Spectroscopist Thinks of it as an Atomic Emission Spectrometer with a Fancy Detector
 - The Mass Spectroscopist Thinks of it as a Mass Spectrometer with a Fancy Inlet System

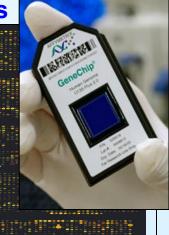
Eliminating Redundancy with Templates

- Components of Multi-step, Multi-sequence or Multidimensional Datasets often Contain Redundant Information
- For Example, Each Spectrum in a Set of Spectra may Share Common Wavelength Axis Parameters or Samples may Share Common Property Descriptions
- AnIML Utilizes a Data Structure Called a Template to Record such Common Parameters
- Templates may be Referenced Subsequently in lieu of Repetitively Recording the Redundant Data
- In an AnIML File Templates must be Declared and Populated before being Referenced

What is a Sample?

Today's Samples Can be <u>Complex</u>


Racks and Arrays of Individual Vials



Molded Arrays of Vials a.k.a Microplates

Spotted Arrays on Glass Slides a.k.a. Microarrays

Spotted Arrays Inside Microplate Wells

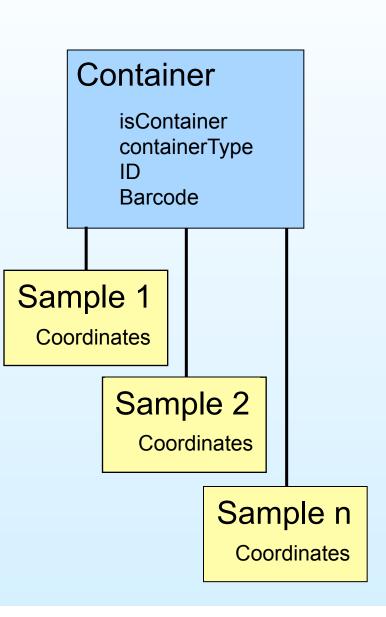
Consider a Microplate...

How Many Samples Does a Microplate Represent?
96 Different Samples?
A Single Sample?
Something in Between?

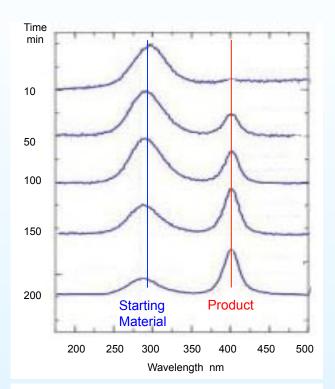
- AnIML does NOT Force the Answer to this Question
- The Answer is Up to the Writer of the AnIML File
- It Depends on How Scientists "See" their Data

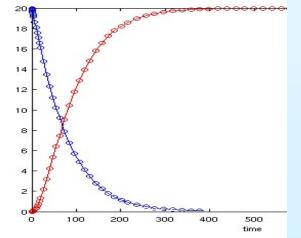
Dealing with Samples

Samples may be:

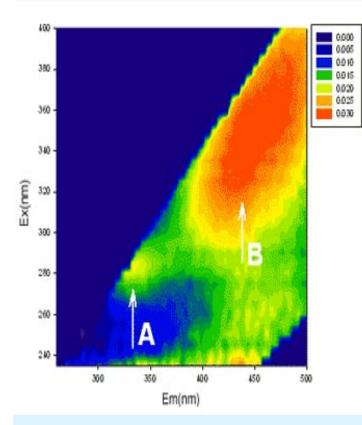

- Individual (Single Vial, Single Bottle)
- Containerized (Racks, Microtiter Plates, Arrays)

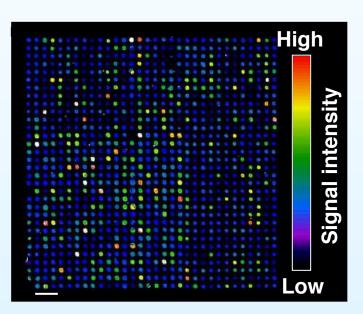
Containerized Samples may be:


- Simple
 - Vials in Rack
 - Wells in Microtiter Plates
 - Spots on Arrays
- Compound
 - Discrete with Prescribed Coordinates
 - * Racks
 - * Microtiter Plates
 - * Spots on Arrays
 - Non-discrete with Relative Coordinates
 - * Bands in Gels
 - * Points on Surfaces
 - ★ Spots on Arrays


Experiment Steps may Act on:

- Individual Samples
- Individual Samples within a Container
- Containerized Samples as a Whole


Analytical Data Sequences: Kinetics

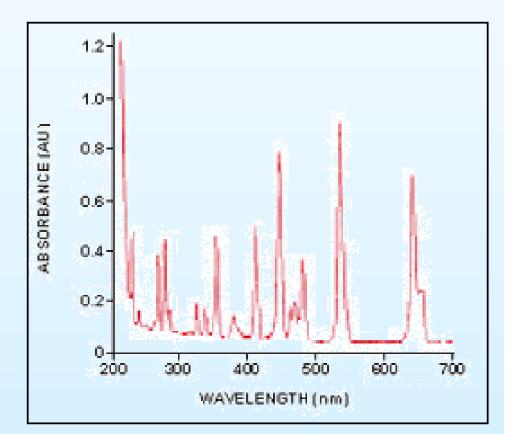

- AnIML Handles Data Sequences Using a Concept Called Indexing
- An Index may be a Sequence Number, a Variable Quantity (such as Time, Pressure, Spatial Location, or pH), or an Analytical Technique
- In this Example:
 - Index Variable (Time) is the Primary Independent Axis
 - Wavelength Variable is the Secondary Independent Axis
 - Intensity is the Dependent Axis
 - The Data can be Considered to be an Array of UV-Vis Spectra Indexed by Time
 - To Generate the Kinetics Plot, the Array is Cross-Cut at the Absorbance Peak Wavelengths to Determine the Data Relating to the Starting Material and Product Concentrations

Multi-Dimensional Data: Fluorescence EEM

- AnIML Handles Data Sequences Using an Indexing Concept
- An Index may be a Sequence Number, a Variable Quantity (such as Time, Pressure, Spatial Location, or pH), or an Analytical Technique
- In this Example:
 - Index Variable (Excitation Wavelength) is the Primary Independent Axis
 - Emission Wavelength Variable is the Secondary Independent Axis
 - Fluorescence Intensity is the Dependent Axis
 - The Data can be Considered to be an Array of Fluorescence Emission Spectra Indexed by Excitation Wavelength
 - To Generate an Excitation Spectrum, the Array is Cross-Cut at an Emission Wavelength

Multi-Dimensional Data: Spatial Fluorescence

- AnIML Handles Data Sequences Using an Indexing Concept
- An Index may be a Sequence Number, a Variable Quantity (such as Time, Pressure, Spatial Location, or pH), or an Analytical Technique
- In this Example:
 - Index Variable (X-position) is the Primary Independent Axis
 - Index Variable (Y-position) is the Secondary Independent Axis
 - Fluorescence Intensity is the Dependent Axis
 - The Data can be Considered to be a Spatial Array of Fluorescence Emission Intensities

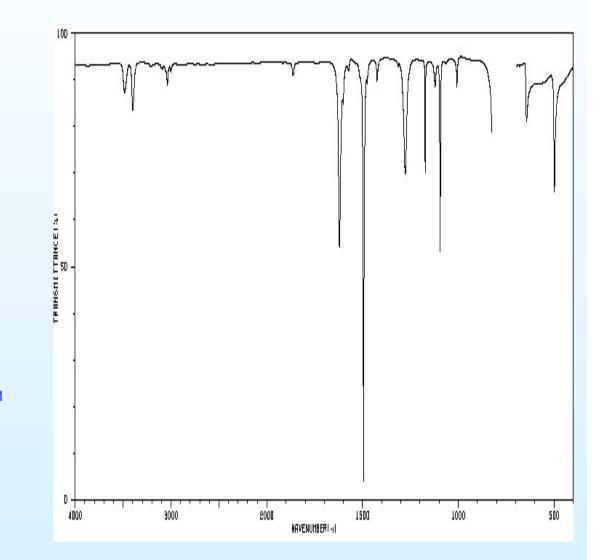


Holmium Oxide UV-Vis Spectrum AnIML File

AnIML File Header

Sample Set

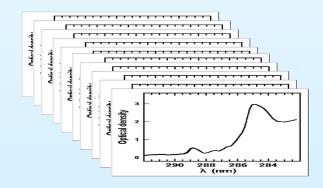
- Sample & Sample Properties
- Reference & Reference Properties
- Experiment Step Set
 - UV-Vis Technique
 - Infrastructure
 - ♦ Sample ID
 - Method
 - Author
 - Instrument Properties
 - Result
 - Independent Wavelength
 - * Auto Increment Value Set
 - * Start 700 nm by -1 nm
 - Dependent Absorbance
 - * Encoded Value Set
- Audit Trail
 - Log Entry



p-Chloroaniline IR AnIML File

AnIML File Header

Sample Set


- Sample & Sample Properties
- Experiment Step Set
 - IR Technique
 - Infrastructure
 - ♦ Sample ID
 - Method
 - Author
 - Instrument Properties
 - Result
 - Dependent Transmittance
 - * Individual Value Set
 - Independent Wavelength
 - * Auto Increment Set
 - * Start 400 cm⁻¹ by 2 cm⁻¹
- Audit Trail
 - Log Entry
- Signature Set
 - Signatures

LC-UV (PDA) AnIML file

- AnIML File Header
- Sample Set
 - Sample & Sample Properties
- Experiment Step Set
 - Template (UV-Vis Time Course)
 - Independent Time
 - * Individual Value Set
 - UV-Vis Time Course
 - Dependent Intensity
 - * Encoded Value Set
 - Chromatography Technique
 - Infrastructure
 - Method
 - Result
 - * Individual Value Set
 - Time = 0.0
 - * Experiment Step Set
 - Template
 - **UV-Vis Technique**
 - ***Infrastructure
 - Method
 - Result
 - Independent Wavelength
 Encoded Value Set

- UV-Vis
 - Infrastructure
 - * ParentDatapointReference Value = 0.01
 - Result
 - * Dependent Intensity
 - **Encoded Value Set**
- Encoded Value Set
- UV-Vis
 - Infrastructure
 - * ParentDatapointReference Value = 2.00
 - Result
 - Dependent Intensity
 Encoded Value Set

