Long Term Storage of Chromatographic Data...

AnIML, TNF, Viewers, and Plenty of Challenges!

Mark Mullins Agilent Technologies

Different sources and types of data...

Databases

Structured Data

Unstructured Data

Retention periods...

Regulations

- 10, 20, 30 years
- SOPs
 - 40, 50... sometimes upwards of 100 years!

Retired applications

All applications progress through a natural lifecycle.

The need for Technology Neutral File (TNF) formats

Critical data must:

- Be preserved in its entirety
- Be OS independent
- Outlive the creating application
- Must be human readable (not binary or proprietary formats)
- Must be usable today (viewing and analysis)

Structured Text Files

The problems with multiple TNF formats

- Little or no interoperability
- Must create multiple viewing and analysis tools
- Proliferation of more formats
- Maintenance and versioning nightmare for developers
- New applications must support all previous formats
- "My format is best" syndrome

The advantages of a standardized format

- Easy exchange of data between applications
- Consistent and well known architecture
- Tools can be designed to work across versions
- Generic tools can be developed and shared
- Shared vendor support for standard format
- Format will be maintained and supported, even if vendors come and go

AnIML to the rescue

- AnIML is a standardized file format
- AnIML is a structured text file, using XML technology
- AnIML is generic and is not vendor specific
- AnIML is human readable
- AnIML is all-inclusive. Every bit of data from an entire experiment can be represented and stored in an AnIML file
- AnIML is flexible, while still predictable
- Data in an AnIML file can be tightly constrained for a given analytical technique

Mapping data to AnIML

Application developers can begin to map analytical data into AnIML by educating themselves on the following topics:

- AnIML Core Schema
 - This schema is the heart of AnIML, and ultimately defines the structure for all data in AnIML XML files
- AnIML Technique Documents
 - These schemas define the rules for your structured data, given a particular analytical technique

Mapping data to AnIML

Example

- Mapping Position of Peak and Height of Peak into the AnIML schema
- Without a technique document, where do we put these items, and what are they called?

Mapping data to AnIML

Example

 The technique document tells us to put these items inside of a Vector, and call them <u>PeakPosition</u> and <u>PeakHeight</u>, respectively

Technique documents cover common values only

Peak Number Peak Position Peak Height Peak Width Peak Area Peak Amount etc.

What to do with custom data system values?

Area to Height Ratio Number of Shoulders Peak Integration Events etc.

Answer...

- The core schema provides for storage of custom data through a concept called ParameterCategorySets
- The data is still structured, and can be discovered and viewed by generic viewers

Customizable Architecture

踱 AnIML File Viewer		
File Help		
	Processed List 1 of 9	
- 🛄 Method File Data Block	1. Ampl 11653.0)72265625
Event List 1 of 1	2. AreaHeightRatio 11.7072	275390625
Report List or	3. BaseLineEndY (non-corrected) 11510.5	5 (Units: microvolts)
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	4. EndLevel 0	
📮 🗺 Peak Results (1 of 1)	5. Height (non-corrected) 126.102	2325439453 (Units: microvolts)
🔤 Standard Results	6. ID-tm 0 (Units	s: min)
	7. NumberShoulders 0	
Processed List 1 of 9	8. NumberSlices 0	
Processed List 2 of 9	9. PeakType NormalF	Peak
Processed List 4 of 9	10. PeakCode {}	
Processed List 5 of 9	11. PeakOffEvent {}	
Processed List 6 of 9	12. PeakOnEvent {}	
Processed List 7 of 9	13. RF 1	
Processed List 9 of 9	14. ShoulderStart 0	
⊞ 🞇 Raw Data	15. SliceStart 0	
🖶 🥛 CEFTIN002008.RES	16. BaseLineStartY (non-corrected) 11572.4	431640625 (Units: microvolts)
EFTIN002009.RES	17. StartLevel 0	
	18. SumGroup	
	19. Standard	
EFTIN002013.RES	20. PeakSymmetry 0	
🐵 📋 CEFTIN002014.RES		
🕀 🥛 CEFTIN002015.RES		
CEFTIN002016.RES		
E CEFTIN002019.RES	✓	
Ready	le: ceftin002_2_seq_127748833600625000.animl	Experiments: 20

A typical AnIML file can be quite LARGE

A typical Chromatograph AnIML file can easily be 50,000+ lines of text. Includes items such as:

- General file information
- Method configuration
- Instrument configuration
- Injector configuration
- Calibration information
- Raw data results
- Peak results
- Revision information
- etc.

Developers need to be aware of the size requirements, and design viewers for speed from the ground up.

Best programming practices

Encapsulate logic to write sections of the AnIML file into object classes

- Encourages code reuse, and allows bugs to be fixed in one place
- Enhancements and changes are easy to make
- Maintain a level of indirection between source data and the AnIML file
 - If new features and/or versions of the AnIML schema are released, changes are easily accommodated

- Tools, applications, viewers should operate on the indirect data
 - When changes occur upstream, the tools will continue to work unmodified, once the intermediate object classes are changed

Demo

- View real AnIML XML file
- View same AnIML file in Agilent's AnIML File Viewer

Summary

- Massive amounts of data are being generated
- Much of this data must be kept for 30+ years
- Applications retire, but the data must live on, in a TNF format
- AnIML is being created by the ASTM subcommittee E13.15, and is <u>the</u> standard for TNF representations of analytical data
- AnIML is a highly structured, but flexible file format
- Tools, applications, and viewers are already being generated around AnIML

Questions

